Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ping Wang, ${ }^{*}$ Xiao-Nan Xu, Lan-Fang Zheng and Yan-Qing Bao

Department of Fire Protection Engineering, Chinese People's Armed Police Forces Academy, Langfang 065000, People's Republic of China

Correspondence e-mail:
pingwangwjxy@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.034$
$w R$ factor $=0.101$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[3-dimethylamino-1-(2-pyridyl)prop-2-enonato]diperchloratozinc(II)

The title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right]$, crystallizes as mononuclear molecules with distorted octahedral $\mathrm{Zn}^{\mathrm{II}}$ coordination. 3-Dimethylamino-l-(2-pyridyl)prop-2-enone ions are coordinated to $\mathrm{Zn}^{\mathrm{II}}$ as bidentate ligands, while the perchlorate ions are monodentate. The Zn atom lies on a centre of symmetry.

Comment

The structures of a large number of complexes obtained from the reactions of $\mathrm{Zn}^{\mathrm{II}}$ ions with different pyridine derivatives as ligands have been reported: examples are diphenyl(2-pyridyl)methanol $\mathrm{Zn}^{\mathrm{II}}$ (Doering et al., 1986), $\left[\mathrm{Zn}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\right.$ -$\left.\left\{\mathrm{OCH}_{2}(2-\mathrm{py})\right\}\right]_{4}$ (van der Schaaf et al., 1993), $\mathrm{Zn}^{\mathrm{II}} / X /(\mathrm{py})_{2} \mathrm{CO}$ [$X=\mathrm{Cl}^{-}, \mathrm{N}_{3}{ }^{-}$and $\mathrm{SO}_{4}{ }^{2-}$, and (py) ${ }_{2} \mathrm{CO}$ is di-2-pyridyl ketone; Katsoulakou et al.., 2002].

(I)

In the monomeric title complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (I), the $\mathrm{Zn}^{\mathrm{II}}$ atom is surrounded by two bidentate 3-di-methylamino-l-(2-pyridyl)prop-2-enone and two monodentate perchlorate ligands. The Zn atom lies on a centre of symmetry (Fig. 1).

Although the $\mathrm{Zn}^{\text {II }}$ atom has four-coordination, close contact of atom $\mathrm{O} 2[\mathrm{Zn} 1 \cdots \mathrm{O} 2=2.44$ (3) \AA] may be considered to give six-coordination. The six-coordination around the $\mathrm{Zn}^{\mathrm{II}}$ ion can be described as distorted octahedral.

The $\mathrm{O} 1-\mathrm{Zn} 1 \cdots \mathrm{O} 2$ and $\mathrm{N} 2-\mathrm{Zn} 1 \cdots \mathrm{O} 2$ angles are 86.4 (6) and $85.3(8)^{\circ}$, respectively. The configuration around atom Zn 1 is given by the torsion angles listed in Table 1.

Experimental

The slow diffusion of a $\mathrm{CH}_{3} \mathrm{OH}$ solution (5 ml) of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ $(1.0 \mathrm{mmol})$ into a CHCl_{3} solution (5 ml) of 3-dimethylamino-l-(2-pyridyl)prop2-enone (1.0 mmol) resulted in the formation of the single crystals of (I).

Received 3 May 2005 Accepted 28 June 2005 Online 6 July 2005

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right]$	$Z=1$
$M_{r}=616.70$	$D_{x}=1.680 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.5449$ (19) \AA	Cell parameters from 2384
$b=9.187$ (2) \AA	reflections
$c=9.5884$ (19) \AA	$\theta=2.4-27.0^{\circ}$
$\alpha=79.358$ (3) ${ }^{\circ}$	$\mu=1.29 \mathrm{~mm}^{-1}$
$\beta=78.130$ (2) ${ }^{\circ}$	$T=298$ (2) K
$\gamma=70.887$ (3) ${ }^{\circ}$	Block, pink
$V=609.6$ (2) \AA^{3}	$0.52 \times 0.34 \times 0.31 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detecter diffractometer	2166 independent reflections 1988 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.019$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-6 \rightarrow 9$
$T_{\text {min }}=0.554, T_{\text {max }}=0.691$	$k=-9 \rightarrow 11$
3200 measured reflections	$l=-10 \rightarrow 11$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0539 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$	+ $0.1968 P$]
$w R\left(F^{2}\right)=0.101$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.12$	$(\Delta / \sigma)_{\text {max }}=0.025$
2166 reflections	$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{\AA^{-3}}$
182 parameters	$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}
H -atom parameters constrained	Extinction correction: SHELXL97 (Sheldrick, 1997)
	Extinction coefficient: 0.027 (4)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.0216(16)$	$\mathrm{Zn} 1-\mathrm{O} 2$	$2.44(3)$
$\mathrm{Zn} 1-\mathrm{N} 2$	$2.0448(19)$		
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$80.22(7)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{O} 2$	$85.3(8)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 2$	$93.6(6)$		
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C} 6$	$-3.04(15)$	$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	$-85.0(8)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C} 6$	$91.4(5)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 2-\mathrm{Cl} 1$	$-27(3)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C} 10$	$179.5(2)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{O} 2-\mathrm{Cl} 1$	$-107(3)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C} 10$	$-86.0(5)$		

Atom O 2 of the perchlorate ligand is disordered and was modelled with split positions, having site occupation factors of 0.62 (13) and 0.38 (13) with common isotropic displacement parameters. H atoms were positioned geometrically at distances of $0.93(\mathrm{CH})$ and $0.96 \AA$ $\left(\mathrm{CH}_{3}\right)$ from their parent C atoms; a riding model was used during the

Figure 1
Drawing of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radii. [Symmetry code: $2-x,-y,-z$.]
refinement process. The $U_{\text {iso }}(\mathrm{H})$ values were constrained to be 1.2 (1.5 for methyl) times $U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

References

Bruker (1998). SMART, SAINT and SHELXTL (Version 5.16). Bruker AXS Inc., Madison, Wisconsin, USA.
Doering, M., Ludwig, W., Uhlig, E., Nefedov, V. I. \& Salin, Y. (1986). Z. Chem. 26, 214-215.
Katsoulakou, E., Lalioti, N., Raptopoulou, C. P., Terzis, A., Manessi-Zoupa, E. \& Perlepes, S. P. (2002). Inorg. Chem. Commun. 5, 719-723.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Schaaf, P. A. van der, Wissing, E., Boersma, J., Smeets, W. J. J., Spek, A. L. \& van Koten, G. (1993). Organometallics, 12, 3624-3629.

